HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a,b là các só thực dương thỏa mãn a+b=2. Tìm GTNN của
A= \(a^3+b^3+\dfrac{6}{a^2+b^2}+3ab\)
Cho x,y,z>0; \(x^2+y^2+z^2+4xyz=2\left(xy+yz+zx\right)\).Tìm GTLN của P=x(1-y)(1-z)
Cho x,y\(\ge0\); \(x^2+y^2=2\). Tìm min,max A=\(\dfrac{x^3+y^3+4}{xy+1}\)
Cho a,b,c\(\ge0\), ab+bc+ca=1. Tìm GTNN của P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Cho a,b,c>0 và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{3}\). Tìm GTLN P=\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\)
cho a,b>0 và a+b\(\le4\).Tìm GTNN cuả P=\(\dfrac{2}{a^2+b^2}+\dfrac{35}{ab}+2ab\)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):y=ax+b (a\(\ne0\)) đi qua điểm A(1,4) cắt các tia Ox, Oy lần lượt tại B và C (khác O).
a)Viết phương trình đường thẳng (d) sao cho biểu thức OA+OB+OC đạt GTNN.
b)Tính GTLN của biểu thức P=\(\dfrac{OB.OC}{BC}\)
Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng:\(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)