Câu trả lời:
\(\dfrac{1}{2\left(1+\sqrt{x+2}\right)}+\dfrac{1}{2\left(1-\sqrt{x+2}\right)}+\dfrac{x^2-2x}{1+x^3}\\ =\dfrac{1-\sqrt{x+2}}{2\left(1-x-2\right)}+\dfrac{1+\sqrt{x+2}}{2\left(1-x-2\right)}+\dfrac{x^2-2x}{1+x^3}\\ =\dfrac{1-\sqrt{x+2}+1+\sqrt{x+2}}{-2-2x}+\dfrac{x^2+2x}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{2}{-2\left(1+x\right)}+\dfrac{x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}\\ =-\dfrac{1}{1+x}+\dfrac{x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-x^2+x-1+x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-x-1}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =-\dfrac{1}{x^2-x+1}\left(đpcm\right)\)