Học tại trường Chưa có thông tin
Đến từ Đà Nẵng , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 820
Điểm GP 465
Điểm SP 966

Người theo dõi (25)

Lê Nghia
Rhider
Lê Phương Anh

Đang theo dõi (2)

Akai Haruma

Câu trả lời:

b) Vì KB là tiếp tuyến \(\Rightarrow\angle KBE=\angle KAB\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó) 

Xét \(\Delta KBE\) và \(\Delta KAB:\) Ta có: \(\left\{{}\begin{matrix}\angle KBE=\angle KAB\\\angle BKAchung\end{matrix}\right.\)

\(\Rightarrow\Delta KBE\sim\Delta KAB\left(g-g\right)\Rightarrow\dfrac{KB}{KA}=\dfrac{KE}{KB}\Rightarrow KB^2=KE.KA\)

Vì \(AC\parallel OH\) \(\Rightarrow\angle KOE=\angle OCA=\angle OAK\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta KOE\) và \(\Delta KAO:\) Ta có: \(\left\{{}\begin{matrix}\angle KOE=\angle KAO\\\angle OKAchung\end{matrix}\right.\)

\(\Rightarrow\Delta KOE\sim\Delta KAO\left(g-g\right)\Rightarrow\dfrac{KO}{KA}=\dfrac{KE}{KO}\Rightarrow KO^2=KE.KA\)

\(\Rightarrow KO^2=KB^2\Rightarrow KO=KB\Rightarrow K\) là trung điểm OB

c) Ta có: \(\angle CFA+\angle CDA=90+90=180\Rightarrow CFAD\) nội tiếp

\(\Rightarrow\angle CDF=\angle CAF=\angle HBC\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Ta có: \(\angle BHC+\angle BFC=90+90=180\Rightarrow BHCF\) nội tiếp

\(\Rightarrow\angle HBC=\angle HFC\Rightarrow\angle CDF=\angle CFH\)

Tương tự \(\Rightarrow\angle CFD=\angle CHF\)

Xét \(\Delta CFD\) và \(\Delta CHF:\) Ta có: \(\left\{{}\begin{matrix}\angle CDF=\angle CFH\\\angle CFD=\angle CHF\end{matrix}\right.\)

\(\Rightarrow\Delta CFD\sim\Delta CHF\left(g-g\right)\Rightarrow\dfrac{CF}{CH}=\dfrac{CD}{CF}\Rightarrow CF^2=CD.CH\)

undefined

 

Câu trả lời:

a) Ta có: \(\angle MEC=\angle MFC=90\Rightarrow MEFC\) nội tiếp

Ta có: \(\angle BDM+\angle BEM=90+90=180\Rightarrow BDME\) nội tiếp

\(\Rightarrow\angle DBM=\angle DEM\)

b) BDME nội tiếp \(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)

MEFC nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle ACM\)

mà \(\angle DBM=\angle ACM\) (ABMC nội tiếp)

\(\Rightarrow\angle BED=\angle FEC\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng

Xét \(\Delta MBD\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MFC=\angle MDB\\\angle MCA=\angle MBD\end{matrix}\right.\)

\(\Rightarrow\Delta MBD\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MF}\Rightarrow MB.MF=MD.MC\)

c) Kẻ đường cao AH,BI

Ta có: \(\angle ARV=\angle ACB=\angle BVH\left(=90-\angle CBI\right)=\angle AVI\)

\(\Rightarrow\Delta AVR\) cân tại A có \(AC\bot VR\Rightarrow AC\) là trung trực VR

mà F nằm trên AC \(\Rightarrow FV=FR\Rightarrow\Delta FVR\) cân tại F \(\Rightarrow\angle FVR=\angle FRV\)

DF cắt BR tại G

\(\angle GRM=\angle BRM=\angle BCM=\angle ECM=\angle EFM=\angle GFM\)

\(\Rightarrow GRFM\) nội tiếp mà \(MF\parallel GR (\bot AC)\) \(\Rightarrow GRFM\) là hình thang cân

\(\Rightarrow\angle MGR=\angle FRG=\angle FRV=\angle FVR\) \(\Rightarrow VF\parallel GM\)

mà \(MF\parallel GR\) \(\Rightarrow VFMG\) là hình bình hành có GF,VM là các đường chéo nên cắt nhau tại trung điểm mỗi đường 

\(\Rightarrow DF\) đi qua trung điểm VM

undefined