HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho dãy un xác định: \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{2+u_n}\end{matrix}\right.\forall n\in N^{\cdot}\). Xác định số hạng tổng quát của dãy, xét tính tăng giảm của dãy đó.
Giải phương trình:
\(\cos3x+\cos7x=2\sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2\cos^2\dfrac{9\pi}{2}\)
Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2). Đường cao CH có phương trình \(x-y+1=0\\\), đường phân giác trong BN có phương trình \(2x+y+5=0\). Viết phương trình cạnh BC.
Trong mặt phẳng Oxy, cho đường thẳng d: \(2x+y-3=0\) và đường thẳng Δ:\(4x+2y-1=0\). Tập hợp các điểm cách đều đường thẳng d và Δ nằm trên đường thẳng l có phương trình \(ax+by+1=0\) với a, b ∈ R. Tính a+b
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
Một cạnh của tam giác có trung điểm là M(-1;1), hai cạnh kia nằm trên hai đường thẳng: d1: 2x + 6y +3 = 0 và d2: x + y - 2 = 0. Viết phương trình cạnh thứ 3