Bài III:
Ta có \(3a^2+14ab+8b^2=3a^2+12ab+2ab+8b^2=3a\left(a+4b\right)+2b\left(a+4b\right)=\left(a+4b\right)\left(3a+2b\right)\le\dfrac{\left(a+4b+3a+2b\right)^2}{4}=\dfrac{\left(4a+6b\right)^2}{4}=\dfrac{\left(2a+3b\right)^2\cdot4}{4}=\left(2a+3b\right)^2\)
\(\Rightarrow\sqrt{3a^2+14ab+8b^2}\le\sqrt{\left(2a+3b\right)^2}=2a+3b\) \(\Rightarrow\dfrac{a^2}{\sqrt{3a^2+14ab+8b^2}}\ge\dfrac{a^2}{2a+3b}\) (1)
Chứng minh tương tự ta được: \(\dfrac{b^2}{\sqrt{3b^2+14bc+8c^2}}\ge\dfrac{b^2}{2b+3c}\) (2); \(\dfrac{c^2}{\sqrt{3c^2+14ca+8a^2}}\ge\dfrac{c^2}{2c+3a}\) (3)
Cộng từng vế của (1), (2) và (3) ta được:
\(\dfrac{a^2}{\sqrt{3a^2+14ab+8b^2}}+\dfrac{b^2}{\sqrt{3b^2+14bc+8c^2}}+\dfrac{c^2}{\sqrt{3c^2+14ca+8a^2}}\ge\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\) (*).
Ta cần chứng minh: \(\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{a+b+c}{5}\)(**)
Áp dụng bất đẳng thức Cauchy-schwarz ta được: \(\left(\dfrac{x^2}{u}+\dfrac{y^2}{t}+\dfrac{z^2}{v}\ge\dfrac{\left(x+y+z\right)^2}{u+t+v}\right)\)
\(\Rightarrow\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)5}=\dfrac{a+b+c}{5}\)
\(\Rightarrow\) Bất đẳng thức (**) đúng \(\Rightarrow\) Bđt (*) đúng
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\) Vậy...