Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 31
Số lượng câu trả lời 274
Điểm GP 35
Điểm SP 246

Người theo dõi (10)

Lưu Võ Tâm Như
Ngọc
Léandre Mignon
Lolyta

Đang theo dõi (0)


Câu trả lời:

a) Vì O lầ điểm cách đều 3 cạnh của \(\Delta ABC\) nên:
+) \(OD=OE=OF\)

+) \(AO\)\(BO\) và \(CO\) là 3 đường phân giác của \(\Delta ABC\)

Xét \(\Delta BFO\) và \(\Delta BDO\) có:

\(\widehat{BFO}\)=\(\widehat{BDO}\)=90o

\(BO\) chung

\(OF=OD\) (CMT)

\(\Rightarrow\Delta BFO=\Delta BDO\) (ch-cgv)

\(\Rightarrow BF=BD\)

\(\Rightarrow\Delta BFD\) cân tại \(B\)

\(\Rightarrow\widehat{BFD}\)=\(\widehat{BDF}\)= ( \(180^o\)\(\widehat{FBD}\)) : 2 \(\left(1\right)\)

Vì \(BA=BM\) (gt) nên \(\Delta BAM\) cân tại \(B\)

\(\Rightarrow\widehat{BAM}\)=\(\widehat{BMA}\)= (\(180^o\)-\(\widehat{ABM}\)) : 2 \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\widehat{BFD}\)=\(\widehat{BAM}\) mà chúng ở vị trí đồng vị nên \(DF\)//\(AM\)

\(\Rightarrow\) Tứ giác \(AFDM\) là hình thang \(\left(3\right)\)

Từ \(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) \(AFDM\) là hình thang cân

                     \(\Rightarrow\) \(MF=AD\) \(\left(4\right)\)

CM tương tự ta được: \(AEDN\) là hình thang cân

                               \(\Rightarrow\) \(NE=AD\) \(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) \(\Rightarrow MF=NE\)

b) Xét \(\Delta ODM\) và \(\Delta OFA\) có:

\(OD=OF\) (CMT)

\(\widehat{ODM}\)=\(\widehat{OFA}\)=\(90^o\)

\(OM=FA\) (\(AFDM\) là hình thang cân)

\(\Rightarrow\Delta ODM=\Delta OFA\) (c.g.c)

\(\Rightarrow OM=OA\left(6\right)\)

CM tương tự ta được \(\Delta ODN=\Delta OEA\) (c.g.c)

                             \(\Rightarrow\)\(ON=OA\) \(\left(7\right)\)

Từ \(\left(6\right)\) và \(\left(7\right)\) \(\Rightarrow OM=ON\)

                        \(\Rightarrow\) \(\Delta MON\) cân tại \(O\)

​​Mình biết bài này là từ 2019 rồi nhưng mà đề này mình thấy chưa ai làm nên mình làm để có bạn nào tìm thì sẽ có để tham khảo.