a) Xét tam giác ADB và tam giác AEC có:
AB=AC (gt)
A là góc chung
góc E = góc D =90 độ
=> tam giác ADB= tam giác AEC ( cạnh huyền góc nhọn)
=> AE = AD ( 2 cạnh tương ứng)
=> tam giác ADE cân tại A
b) Ta có: tam giác ADE can tại A ( cmt)
góc E1 = góc D1= 180 độ - góc A : 2 ( góc A + góc D1 + góc E1 = 180 độ)
góc B= góc C= 180 độ - góc A : 2 ( gt)
=> góc E1= góc B ( 2 góc tương ứng)
Mà góc E1 = góc B ( 2 góc tương ứng)
=> DE//BC
c) Ta có: EB= AB - AE
DC= AC - AD
mà AB = AC (gt)
AE = AD ( cma)
=> EB=DC
xét tam giác EIB và tam giác DIC có:
góc E = góc D= 90 độ ( gt)
góc B1 = góc C1 ( tam giác AEC = tam giác ADB)
EB = DC ( cmt)
=> tam giác EIB = tam giác DIC ( g.c.g)
=> IB - IC ( 2 cạnh tương ứng)