Cho hình bình hành ABCD tâm O. Gọi M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh DN = AM và chứng minh AMND là hình bình hành.
b) Chứng minh MBND là hình bình hành.
c) Chứng minh AN // CM và AN = CM.
d) Chứng minh M, O và N thẳng hàng.
e) Đường chéo BD cắt AN ở I và CM ở Q. Chứng minh BQ = QI = ID.
Cho ∆ABC nhọn (AB < AC). Hai đường trung tuyến BM và CN của ∆ABC cắt nhau tại G.
a) Chứng minh MN là đường trung bình của ∆ABC và suy ra BNMC là hình thang.
b) Gọi I là trung điểm của BC. Chứng minh A; G và I thẳng hàng.
c) Chứng minh AB = 2MI.
d) Gọi H và K lần lượt là trung điểm BG và CG. Chứng minh MN = HK.