\(=\left[\dfrac{1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]\cdot\dfrac{1-\sqrt{a}}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\dfrac{1-\sqrt{a}}{\sqrt{a}}=\dfrac{2}{\sqrt{a}+1}\)
Với \(a=3-2\sqrt{2}tmđk\)thay vào M ta được :
\(M=\dfrac{2}{\sqrt{3-2\sqrt{2}}+1}=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right)^2}+1}=\dfrac{2}{\sqrt{2}-1+1}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
Ta có : \(18M=18\cdot\dfrac{2}{\sqrt{a}+1}=\dfrac{36}{\sqrt{a}+1}\)
Đặt \(\dfrac{36}{\sqrt{a}+1}=x^2\left(x\in N\cdot\right)\Rightarrow x^2\left(\sqrt{a}+1\right)=36\)
Ta lại có a2.b2 = (a.b)2 => \(\left\{{}\begin{matrix}x^2\\\sqrt{a}+1\end{matrix}\right.\)phải là bình phương của các số tự nhiên
mà \(x^2\left(\sqrt{a}+1\right)=36\)=> Ta có các trường hợp sau :
\(\left\{{}\begin{matrix}x^2=1\\\sqrt{a}+1=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\a=1225\end{matrix}\right.\)(tm)
\(\left\{{}\begin{matrix}x^2=36\\\sqrt{a}+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\a=0\end{matrix}\right.\)(ktm)
\(\left\{{}\begin{matrix}x^2=4\\\sqrt{a}+1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\a=64\end{matrix}\right.\)(tm)
\(\left\{{}\begin{matrix}x^2=9\\\sqrt{a}+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\a=9\end{matrix}\right.\)(tm)