2.
\(a,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(b,x^2-3y^2=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
\(c,\left(3x-2y\right)^2-\left(2x-3y\right)^2\\
=\left(3x-2y-2x+3y\right)\left(3x-2y+2x-3y\right)\\
=\left(x+y\right)\left(5x-5y\right)=5\left(x-y\right)\left(x+y\right)\)
\(d,9\left(x-y\right)^2-4\left(x+y\right)^2\\
=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\
=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\
=\left(x-5y\right)\left(5x-y\right)\)
\(e,\left(4x^2-4x+1\right)-\left(x+1\right)^2\\
=\left(2x-1\right)^2-\left(x+1\right)^2\\
=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\\
=3x\left(x-2\right)\)
\(f,x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)
\(g,27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,027x+0,01\right)\)
\(h,125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)