HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Không có số hạng nào.
\(S=\dfrac{\dfrac{1}{u_1}\left[1-\left(\dfrac{1}{2}\right)^{2020}\right]}{1-\dfrac{1}{2}}=\dfrac{2\left(2^{2020}-1\right)}{2^{2020}u_1}\\ P=\left(u_1+u_2+...+u_{2020}\right)+\left(u_2+u_3+...+u_{2021}\right)\\ =\left(1+q\right)\left(u_1+u_2+...+u_{2020}\right)=3u_1\left(2^{2020}-1\right)\\ \rightarrow SP=\dfrac{3\left(2^{2020}-1\right)^2}{2^{2019}}\)
Đặt \(v_n=u_n-\dfrac{1}{n}\)
\(u_{n+1}=\dfrac{1}{4}\left(3u_n+\dfrac{n-3}{n^2+n}\right)\rightarrow v_{n+1}=\dfrac{3}{4}v_n\\ \rightarrow v_n=v_1\left(\dfrac{3}{4}\right)^{n-1}=2\left(\dfrac{3}{4}\right)^{n-1}\\ \rightarrow u_n=2\left(\dfrac{3}{4}\right)^{n-1}+\dfrac{1}{n}\\ \rightarrow u_{2021}=\dfrac{4042.3^{2020}+4^{2020}}{4^{2020}.2021}\)
\(u_n=\dfrac{2n-5}{4n-6}\)
\(cos^3x+sin^3x=sin2x+sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(1-\dfrac{sin2x}{2}\right)=sin2x+sinx+cosx\\ \Leftrightarrow-\dfrac{1}{2}sin2x\left(sinx+cosx+2\right)=0\\ \)
Mà \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>-2\)
\(\Rightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)
Tổng các nghiệm của phương trình trong \(\left[0;2018\pi\right]\) là:
\(S=\dfrac{\left(0+2018\pi\right)\left(\dfrac{2018\pi-0}{\dfrac{\pi}{2}}+1\right)}{2}=4073333\pi\)
(SAC) có: \(KM\cap AC=I\)
(ABC) có: \(IN\cap AB=J\)
Ta được thiết diện của hình chóp và (KMN) là tứ giác KJNM.