Học tại trường Chưa có thông tin
Đến từ Quảng Bình , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 832
Điểm GP 114
Điểm SP 717

Người theo dõi (58)

Thụy Miên
Kaijo
Đỗ Lam Tư
Ann Đinh

Đang theo dõi (28)


Câu trả lời:

Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
                                                                    \(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau :  \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình  ta có:
                                    \(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\) 
                                                          \(\Leftrightarrow xy-xz+y^2-z^2=0\)
                                                          \(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
                                                          \(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
           \(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
       \(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)