Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 3
Số lượng câu trả lời 1
Điểm GP 0
Điểm SP 1

Người theo dõi (0)

Đang theo dõi (0)


Câu trả lời:

a) Ta có: CF = AF = AC / 2 (F là trung điểm của AC)
              BE = AE = AB / 2 (E là trung điểm AB)
Mà AC = AB (tam giác ABC cân tại A)
=> AF = AE = CF = BE 
=> tam giác AFE cân tại A (1)

Ta có: F, E lần lượt là trung điểm của AC, AB (gt)
=> FE là đường trung bình của tam giác ABC
=> FE // BC
Mà AI vuông góc với CB (AI là đường cao)
=> AI vuông góc với FE (2)

Từ (1), (2) => AI cũng là đường trung trực của FE (giải thích thêm: tính chất các đường thẳng từ đỉnh của tam giác cân)
=> E đối xứng với F qua AI (đpcm)

b) Xét tứ giác FEBC, có:
* EF // BC (cmt)
=> FEBC là hình thang 
Mà FC = EB (cmt)
=> FEBC là hình thang cân

Xét tam giác FOC và tam giác EOB, có:
* FC = EB (cmt)
* góc CFO = góc BEO (FEBC là hình thang cân)
* FO = EO (E đối xứng với F qua O; O thuộc AI)
=> tam giác FOC = tam giác EOB (c.g.c)
=> góc FOC = góc EOB (yếu tố tương ứng)
Mà góc HOF, góc KOE lần lượt đối đỉnh với góc EOB và góc FOC
=> góc HOF = góc KOE

Xét tam giác HOF và tam giác KOE, có:
* góc HFO = góc KEO ( tam giác AFE cân tại A)
* FO = EO (E đối xứng với F qua AO)
* góc HOF = góc KOE (cmt)
=> tam giác HOF = tam giác KOE (g.c.g)
=> HF = KE (yếu tố tương ứng) (đpcm)

c) Xét tam giác HOK, có:
* OH = OK ( tam giác HFO = tam giác KEO)
=> tam giác HOK cân tại O
=> góc OHK = góc OKH (t/c)

Ta có: góc AOH + góc HOF = 90 độ (AI vuông góc FE)
          góc AOK + góc KOE = 90 độ (AI vuông góc FE)
Mà góc HOF = góc KOE (cmt)
=> góc AOH = góc AOK 
=> OA là phân giác của góc HOK
=> OA cũng là đường trung trực của tam giác cân OKH
=> OA vuông góc HK ( t/c)
Mà OA vuông góc FE ( AI vuông góc FE ; O thuộc AI)
=> HK // FE
Mà FE // CB (cmt)
=> HK // CB 
=> HKBC là hình thang 
Mà góc HCB = góc KBC ( tam giác ABC cân tại A; H thuộc AC; K thuộc AB)
=> HKBC là hình thang cân (đpcm)