Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vecto: \(\overrightarrow{MN}=k\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)
A. \(k=\dfrac{1}{3}\)
B. \(k=3\)
C. \(k=2\)
D. \(k=\dfrac{1}{2}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Gọi M là trung điểm của OD. Tính khoảng cách từ M đến (SAB).
A. \(\dfrac{a}{\sqrt{6}}\)
B. \(\dfrac{a\sqrt{6}}{4}\)
C. \(\dfrac{a\sqrt{3}}{2}\)
D. \(\dfrac{a\sqrt{2}}{3}\)
Cho hình chóp tứ giác đều S.ABCD, tâm đáy là O, có cạnh bên và cạnh đáy cùng bằng a. Gọi M là trung điểm của OD. Tính khoảng cách từ M đến (SAB).
A. \(\dfrac{a}{\sqrt{6}}\)
B. \(\dfrac{a\sqrt{6}}{4}\)
C. \(\dfrac{a\sqrt{3}}{2}\)
D. \(\dfrac{a\sqrt{2}}{3}\)
Trong không gian cho điểm O và bốn điểm A, B, C, D và không có 3 điểm nào thẳng hàng. Điều kiện cần và đủ để A, B, C, D tạo thành hình bình hành là:
A. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
B. \(\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OB}=\overrightarrow{OC}+\dfrac{1}{2}\overrightarrow{OD}\)
C. \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
D. \(\overrightarrow{OA}+\dfrac{1}{2}\overrightarrow{OC}=\overrightarrow{OB}+\dfrac{1}{2}\overrightarrow{OD}\)