Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Hai đường cao AD, BE cắt nhau tại H (D∈BC, E∈AC).
a) Tứ giác ABDE nội tiếp
b) Tia AO cắt đường tròn (O) tại K (K khác A). CM tứ giác BHCK là hình bình hành.
c) Gọi F là giao điểm của tia CH với AB. Tìm giá trị nhỏ nhất của biểu thức: Q=\(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}\).
bạn đánh số 2 vào gần chỗ y nha