Câu trả lời:
+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3
=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)
+ Ta có: 5139 + 3951 + 12
= ...1 + 3950.39 + 12
= ...1 + (392)25.39 + 12
= ...1 + ...125.39 + 12
= ...1 + ...1.39 + 12
= ...1 + ...9 + 12
= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)
Từ (1) và (2) => 9.m + 3 = 10.n + 2
=> 9.m + 1 = 10.n
=> 9.m + 1 = 9.n + n
=> 9.m - 9.n = n - 1
=> 9.(m - n) = n - 1
=> n - 1 chia hết cho 9
=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2
= 90.n + 10 + 2
= 90.n + 12 chia 90 dư 12
=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12