HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
5abcd=abcd x 9
50000 + abcd = abcd x 9
50000 = abcd x 9 - abcd
50000 = abcd x ( 9 - 1 )
50000 = abcd x 8
abcd = 50000 : 8
abcd = 6250
\(A=1+3+3^2+3^3+3^4+...+3^{2014}+3^{2015}\)
\(A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2013}\left(1+3+3^2\right)\)
\(A=13+3^3.13+...+3^{2013}.13\)
\(A=13\left(1+3^3+...+3^{2013}\right)\) chia hết cho 13
\(a,8^4\times16^5\times32=\left(2^3\right)^4\times\left(2^4\right)^5\times2^5=2^{3\times4}\times2^{4\times5}\times2^5=2^{12}\times2^{20}\times2^5=2^{12+20+5}=2^{37}\)\(b,27^4\times81^{10}=\left(3^3\right)^4\times\left(3^4\right)^{10}=3^{3\times4}\times3^{4\times10}=3^{12}\times3^{40}=3^{12+40}=3^{52}\)\(c,625^5\div25^7=\left(5^4\right)^5\div\left(5^2\right)^7=5^{20}\div5^{14}=5^{20-14}=5^6\)
81^7-27^9-9^13 =(3^4)^7-(3^3)^9-(3^2)^13 =3^28-3^27-3^26 =(3^26.3^2)-(3^26.3^1)-(3^26.1) =3^26.(9-3-1) =3^22.(3^4.5) =3^22.405 chia het cho 405 => 81^7-27^9-9^13 chia het cho 405