HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(=3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-6\sqrt{3}\)
\(a,=3x-9-4x+12=-x+3=0\)
\(\Leftrightarrow x=3\)
Vậy ..
\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Vậy ...
\(a,=x^2-1-\left(x^2+4x+4\right)=x^2-1-x^2-4x-4=11\)
\(\Leftrightarrow-5x=15\)
\(\Leftrightarrow x=-3\)
\(b,=\left(x-3-2x+5\right)\left(x-3+2x-5\right)=0\)
\(\Leftrightarrow\left(-x+2\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(a,=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
\(b,=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}=-6\sqrt{3}\)
\(c,=3\sqrt{3}+7\sqrt{3}-9\sqrt{3}+11\sqrt{3}=12\sqrt{3}\)
Đổi : 60m = 0,06km
- Gọi vận tốc dự định đi là x ( km/h, x > 0 )
- Vận tốc thức tế ở hai nửa quãng đường là : x + 10; x - 6 ( km/h )
Theo bài ra ta có : \(\dfrac{0,03}{x+10}+\dfrac{0,03}{x-6}=\dfrac{0,06}{x}\)
\(\Leftrightarrow\dfrac{1}{x+10}+\dfrac{1}{x-6}=\dfrac{2}{x}\)
\(\Leftrightarrow x\left(x-6\right)+x\left(x+10\right)=2\left(x+10\right)\left(x-6\right)\)
\(\Leftrightarrow4x=120\)
\(\Leftrightarrow x=30\) ( TM )
a, \(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(\left(a-b\right)\left(a+b\right)\right)^2=\left(a^2-b^2\right)^2\)
\(b,=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
\(c,=-\left(x^2-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(d,=2\left(x^2+2xy+y^2-4z^2\right)=2\left(\left(x+y\right)^2-4z^2\right)=2\left(x+y-2z\right)\left(x+y+2z\right)\)
\(e,=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)\)
\(f,=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
a, Ta có : \(\left\{{}\begin{matrix}\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\end{matrix}\right.\)
- Thay lần lượt vào A ta được :
\(A=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)=2.2\sqrt{2}=4\sqrt{2}\)
b, \(B=\sqrt{2+\sqrt{3}}\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}=\sqrt{2+\sqrt{3}}\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}=\sqrt{4-3}=\sqrt{1}=1\)
c, \(C=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{2\sqrt{2}+\sqrt{6}-2\sqrt{2-\sqrt{3}}-\sqrt{3}\sqrt{2-\sqrt{3}}+2\sqrt{2}-\sqrt{6}+2\sqrt{2+\sqrt{3}}-\sqrt{3}\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{4\sqrt{2}-2\sqrt{3}\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)