HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Câu a,b hình như nhầm đề mình tự sửa nha ;-;
a, Ta có : \(\left(x^2-x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x^2-3x+2x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+2\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(\left(x+2\right)^2+1\right)\)
b, Ta có : \(\left(x^2-x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x^2+4x-5x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(x-5\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(\left(x-5\right)^2+1\right)\)
\(a,v_{tbAB}=\dfrac{S}{t}=\dfrac{15}{0,5}=30\left(km/h\right)\)
\(v_{tbBC}=\dfrac{S}{t}=\dfrac{15+6}{\dfrac{1}{2}+\dfrac{1}{4}}=28\left(km/h\right)\)
\(b,S_{AC}=S_{AB}+S_{BC}=15+6=21\left(km\right)\)
- Gọi thời gian người đó đi từ C về A là t (h, t > 0 )
\(\Rightarrow S_{AC}=S_{AB}+S_{BC}=v.t+v.t=15.\dfrac{t}{3}+30.\dfrac{2}{3}t=21\)
\(\Rightarrow t=0,84\left(h\right)\)
\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{21}{0,84}=25\left(km/h\right)\)
a, Ta có : \(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(1+\sqrt{x}\right)}=\dfrac{1}{\sqrt{x}}\)
\(\Rightarrow P=\dfrac{A}{B}=\dfrac{\dfrac{1}{\sqrt{x}}}{\dfrac{2}{\sqrt{x}+1}}=\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
b, Ta có : \(P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{x}}\)
Mà \(x>0\)
\(\Rightarrow\dfrac{1}{2\sqrt{x}}>0\)
\(\Rightarrow P>\dfrac{1}{2}\)
Vậy ...
a, - Ta có : BC là đường kính và \(A\in\left(O;R\right)\)
=> Tam giác ABC vuông tại A .
=> \(\widehat{BAC}=90^o\)
b, Ta có : \(\widehat{B}+\widehat{C}=90^o\)
Mà \(\left\{{}\begin{matrix}\widehat{B}=\widehat{BAO}\\\widehat{C}=\widehat{BCA}\end{matrix}\right.\)
\(\Rightarrow\widehat{BAC}+\widehat{BCA}=\widehat{OAx}=90^o\)
=> Ax vuông góc với bán kính .
=> Ax là tiếp tuyến ,
a, \(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x+2\right)^2-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
- Xét tam giác vuông OHA vuông tại H .
=> OA > OH
=> Dây tương ứng MN > EF ( đpcm )
- Xét đường tròn lớn tâm A có : AB = AC = R
=> Tam giác ABC cân .
=> Đường cao AH là đường trung trực .
=> H là trung điểm của BC .
=> HB = HC .
CMTT với hình tròn nhỏ tâm A ta được : HD = HE
Mà HB = HC = HD + DB = HE + EC
=> BD = CE .
a- Áp dụng định lí pitago vào tam giác ABC vuông tại A .
\(BC=\sqrt{AB^2+AC^2}=17\left(cm\right)\)
b, Ta có khoảng các từ I đến các cạnh là như nhau .
Mà \(S=\dfrac{1}{2}AB.AC=d_{\left(I,AB\right)}.p=60=d_{\left(I,AB\right)}.20\)
=> Khoảng cách từ I đến các cạnh là : \(\dfrac{60}{20}=3\left(cm\right)\)
- Số tiền bóng cho mỗi phòng học là : \(6.169000=1014000\) ( đồng )
=> Số tiền lắp cho cả trường 32 phòng học là :
\(1014000.32=32,448,000\) ( đồng )
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\y\ne1\end{matrix}\right.\)
- Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=a\\\dfrac{1}{y-1}=b\end{matrix}\right.\)
\(HPTTT\left\{{}\begin{matrix}2a+b=2\\4a-3b=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b=4\\4a-3b=1\end{matrix}\right.\)
- Trừ hai vế => b = 3/5
=> a = 7/10 .
- Thay lại ta được ; \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{10}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{24}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\) ( TM )
Vậy ..