Học tại trường Chưa có thông tin
Đến từ Ninh Bình , Chưa có thông tin
Số lượng câu hỏi 19
Số lượng câu trả lời 2576
Điểm GP 1351
Điểm SP 3239

Người theo dõi (117)

Huy Jenify
Jackson Williams
Demo:))

Đang theo dõi (3)

Akai Haruma
Hà Đức Thọ

Câu trả lời:

\(a;\left(\cos a-\sin a\right)\left(cosa+sina\right)=cos^2a-sin^2a=1-sin^2a-sin^2a=1-2sin^2a\)

\(b;VP=\left(2cosa-1\right)\left(2cosa+1\right)=4cos^2a-1=4\left(1-sin^2a\right)-1=3-4sin^2a=VT\)

e;\(\dfrac{1}{1+tana}+\dfrac{1}{1+cota}=1\Leftrightarrow cota+tana+2=\left(cota+1\right)\left(tana+1\right)\Leftrightarrow cota+tana+2=cota.tana+cota+tana+1\Leftrightarrow cota+tana+2=1+cota+tana+1\Leftrightarrow0=0\left(đúng\right)\Rightarrow VT=VP\)

\(d;sin^3a+cos^3a=\left(sina+cosa\right)\left(sin^2a-sina.cosa+cos^2a\right)=\left(sina+cosa\right)\left(1-sina.cosa\right)\left(đpcm\right)\left(hđt:a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\right)\)

\(c;sin^2a.cosa+sina.cos^2a=\left(sina.cosa\right)\left(sin^2+cos^2\right)=sina.cosa\)

\(f;;tana+\dfrac{cosa}{1+sina}=\dfrac{sina}{cosa}+\dfrac{cosa}{1+sina}=\dfrac{sina+sin^2a+cos^2a}{cosa\left(1+sina\right)}=\dfrac{1+sina}{cosa\left(1+sina\right)}=\dfrac{1}{cosa}\)

\(g;1+cot^2a=\dfrac{1}{sin^2a}=\dfrac{1}{1-cos^2a}=\dfrac{1}{\left(1-cosa\right)\left(1+cosa\right)}\left(đpcm\right)\)

\(h;\dfrac{1+cosa}{1-cosa}-\dfrac{1-cosa}{1+cosa}=\dfrac{\left(cosa+1\right)^2-\left(cosa-1\right)^2}{1-cosa^2}=\dfrac{\left(cosa+1-cosa+1\right)\left(cosa+1+cosa-1\right)}{1-cos^2a}=\dfrac{4cosa}{sin^2a}\left(đpcm\right)\)

\(k;\dfrac{1+cosa}{sina}-\dfrac{sina}{1+cosa}=\dfrac{\left(cosa+1\right)^2-sin^2a}{sina\left(1+cosa\right)}=\dfrac{cos^2a+2cosa+1-sin^2a}{sina\left(1+cosa\right)}=\dfrac{2cos^2a+2cosa}{sina\left(1+cosa\right)}=\dfrac{2cosa\left(1+cosa\right)}{sina\left(1+cosa\right)}=\dfrac{2cosa}{sina}=2cota\left(đpcm\right)\)

\(m;;;\Leftrightarrow sin^3a=cosa\left(1+cosa\right)\left(tana-sina\right)=\left(cosa+cos^2a\right)\left(tana-sina\right)\Leftrightarrow sin^3a=\left(cosa+cos^2a\right)\left(\dfrac{sina}{cosa}-sina\right)=sina-sina.cosa+cosa.sina-cos^2a.sina\Leftrightarrow sin^3a=sina-cos^2a.sina\Leftrightarrow sin^3a-sina\left(1-cos^2a\right)=0\Leftrightarrow sin^3a-sina.sin^2a=0\Leftrightarrow0=0\left(đúng\right)\Rightarrowđpcm\)

Câu trả lời:

\(a;\Delta'=\left(m+1\right)^2-\left(m^2+2m-8\right)=m^2+2m+1-m^2-2m+8=9>0\)

\(\Rightarrowđpcm\)

\(b,\left\{{}\begin{matrix}x1+x2=-2\left(m+1\right)\\x1-2x2=1\\x1.x2=m^2+2m-8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x1=1+2x2=1+\dfrac{-2m-3}{3}=\dfrac{-2m}{3}\\x2=\dfrac{-2m-3}{3}\\\left(-\dfrac{2m}{3}\right)\left(\dfrac{-2m-3}{3}\right)=m^2+2m-8\Leftrightarrow\dfrac{2m\left(2m+3\right)}{9}=m^2+2m=8\left(1\right)\end{matrix}\right.\)

\(giải\left(1\right)\Rightarrow m=....\)

\(c,-5< x1< x2< 7\Leftrightarrow\left\{{}\begin{matrix}-5< x1< x2\left(1\right)\\x1< x2< 7\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x1+5\right)\left(x2+5\right)>0\\x1+x2+10>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x1x2+5\left(x1+x2\right)+25>0\\-2\left(m+1\right)+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-8-10\left(m+1\right)+25>0\\m< 4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 1\\m>7\end{matrix}\right.\\m< 4\end{matrix}\right.\)\(\Leftrightarrow m< 1\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x1-7\right)\left(x2-7\right)>0\\x1+x2-14< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x1x2-7\left(x1+x2\right)+49>0\\-2\left(m+1\right)-14< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-8+14\left(m+1\right)+49>0\\m>-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -11\\m>-5\end{matrix}\right.\\m>-4\end{matrix}\right.\)

\(\Leftrightarrow m>-4\)

\(\Rightarrow-4< m< 1\) \(thì-5< x1< x2< 7\)

Câu trả lời:

\(f\left(x\right)=\left(3m-4\right)x^2-2\left(m-2\right)x+m-1< 0\)

\(TH1:3m-4=0\Leftrightarrow m=\dfrac{4}{3}\Rightarrow f\left(x\right)=\dfrac{4}{3}x+\dfrac{1}{3}< 0\Leftrightarrow x< -\dfrac{1}{4}\left(ktm\right)\)

\(TH2:3m-4>0\Leftrightarrow m>\dfrac{4}{3}\Rightarrow f\left(x\right)< 0\forall x>1\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x1\le1< x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m-1\right)\left(3m-4\right)>0\\\left(x1-1\right)\left(x2-1\right)\le0\Leftrightarrow x1.x2-\left(x1+x2\right)+1\le0\\\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-4}+1\le0\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le m< \dfrac{4}{3}\left(màm>\dfrac{4}{3}\right)\Rightarrow loại\)

\(TH3:3m-4< 0\Leftrightarrow m< \dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\Delta'=0\Leftrightarrow m=0\left(tm\right)\\x=\dfrac{2\left(m-2\right)}{3m-4}=\dfrac{1}{2}\notin\left(1;+\infty\right)\left(tm\right)\end{matrix}\right.\\\Delta'< 0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{2}\end{matrix}\right.\\x1< x2\le1\left(1\right)\\\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\Leftrightarrow0< m< \dfrac{3}{2}\\\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< m< \dfrac{3}{2}\\\dfrac{m-1}{3m-4}-\dfrac{2\left(m-2\right)}{3m-2}+1\ge0\\\dfrac{2\left(m-2\right)}{3m-4}-2< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m\le\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}m\le0\\0< m\le\dfrac{1}{2}\end{matrix}\right.\)