Học tại trường Chưa có thông tin
Đến từ Ninh Bình , Chưa có thông tin
Số lượng câu hỏi 19
Số lượng câu trả lời 2576
Điểm GP 1351
Điểm SP 3239

Người theo dõi (117)

Huy Jenify
Jackson Williams
Demo:))

Đang theo dõi (3)

Akai Haruma
Hà Đức Thọ

Câu trả lời:

\(\left(cosa\ne1\right)A=\dfrac{sin^4a-cos^4a+cos^2a}{2\left(1-cosa\right)}=\dfrac{\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)+cos^2a}{2\left(1-cosa\right)}=\dfrac{sin^2a}{2\left(1-cosa\right)}=\dfrac{1-cos^2a}{2\left(1-cosa\right)}=\dfrac{1+cosa}{2}\)

\(\left(cosa+cos3a+cos5a+cos7a\ne0\right)\Rightarrow B=\dfrac{sin7a+sina+sin5a+sin3a}{cos7a+cosa+cos5a+cos3a}=\dfrac{2sin\left(\dfrac{7a+a}{2}\right)cos\left(\dfrac{7a-a}{2}\right)+2sin\left(\dfrac{5a+3a}{2}\right)cos\left(\dfrac{5a-3a}{2}\right)}{2cos\left(\dfrac{7a+a}{2}\right)cos\left(\dfrac{7a-a}{2}\right)+2cos\left(\dfrac{5a+3a}{2}\right)cos\left(\dfrac{5a-3a}{2}\right)}=\dfrac{2sin4a.cos3a+2sin4a.cosa}{2cos4a.cos3a+2cos4a.cosa}=\dfrac{2sin4a\left(cos3a+cosa\right)}{2cos4a\left(cos3a+cosa\right)}=\dfrac{sin4a}{cos4a}=tan4a\)

\(C=\dfrac{1-2cos2x+cos4x}{1+2cos2x+cos4x}=\dfrac{1-2cos2x+2cos^22x-1}{1+2cos2x+2cos^22x-1}=\dfrac{cos^22x-cos2x}{cos^22x+cos2x}=\dfrac{cos2x-1}{cos2x+1}\)

\(D=\left(\dfrac{1+cos\beta}{1-cos\beta}\right)tan^2\dfrac{\beta}{2}+sin^2\beta-2\)

\(đặt:t=tan\dfrac{\beta}{2}\Rightarrow D=\left(\dfrac{1+\dfrac{1-t^2}{t^2+1}}{1-\dfrac{1-t^2}{t^2+1}}\right)t^2+\left(\dfrac{2t}{t^2+1}\right)^2-2=\left(\dfrac{\dfrac{2}{t^2+1}}{\dfrac{2t^2}{t^2+1}}\right)t^2+\left(\dfrac{2t}{t^2+1}\right)^2-2=\left(\dfrac{2t}{t^2+1}\right)^2-1=\left(\dfrac{2t}{t^2+1}+1\right)\left(\dfrac{2t}{t^2+1}-1\right)=\left(\dfrac{t^2+2t+1}{t^2+1}\right)\left(\dfrac{-\left(t^2-2t+1\right)}{t^2+1}\right)=\dfrac{-\left(t+1\right)^2\left(t-1\right)^2}{\left(t^2+1\right)^2}=-\left(\dfrac{t^2-1}{t^2+1}\right)^2=-\left(\dfrac{tan^2\dfrac{\beta}{2}-1}{tan^2\dfrac{\beta}{2}+1}\right)^2=-\dfrac{\left(tan^2\dfrac{\beta}{2}-1\right)^2}{\left(tan^2\dfrac{\beta}{2}+1\right)^2}\)

\(b;\Leftrightarrow cosx+sinx=sin^3x+sin^3x.cotx+sin^3x.cot^2x+sin^3x.cot^3x=sin^3x+sin^2x.cosx+sinx.cos^2x+cos^3x=\left(cosx+sinx\right)\left(sin^2x-sinx.cosx+cos^2x\right)+sinx.cosx\left(sin^2x+cos^2x\right)=\left(cosx+sinx\right)\left(1-sinx.cosx\right)+sinx.cosx=cosx+sinx\Rightarrowđúng\)