Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 1
Số lượng câu trả lời 3756
Điểm GP 1131
Điểm SP 2134

Người theo dõi (278)

Đang theo dõi (0)


Câu trả lời:

Bài 1:

a/ \(L=4\pi^2.10^{-7}.\dfrac{N^2}{l}S=4\pi^2.10^{-7}.\dfrac{1000^2}{0,3}.0,04^2.\pi=...\left(H\right)\)

b/ \(\phi=L.i=...\left(Wb\right)\)

c/ \(\xi=\dfrac{L.\Delta i}{\Delta t}=\dfrac{L.\left(2-0\right)}{0,1}=...\left(V\right)\)

2/

a/ \(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow10=\dfrac{1}{0,3}+\dfrac{1}{d'}\Leftrightarrow d'=15\left(cm\right)\)

\(h'=\left|\dfrac{d'}{d}\right|.h=\left|\dfrac{15}{30}\right|.2=1\left(cm\right)\)

b/ Chắc là màn cố định nhỉ?

 \(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'};\left|\dfrac{d'}{d}\right|=2\)

Vì cho ảnh rõ nét trên màn nên ảnh là ảnh thật và ngược chiều với vật

\(\Rightarrow\left|\dfrac{d'}{d}\right|=-\dfrac{d'}{d}=2\Leftrightarrow d'=-2d\)

\(\dfrac{1}{f}=\dfrac{1}{d_1}+\dfrac{1}{d_1'};\left|\dfrac{d_1'}{d_1}\right|=3\Rightarrow-\dfrac{d_1'}{d_1}=3\Leftrightarrow d_1'=-3d_1\)

\(d_1+d_1'-d-d'=10\Leftrightarrow d_1-3d_1-d+2d=10\Leftrightarrow d-2d_1=10\left(1\right)\)

\(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{d_1}+\dfrac{1}{d_1'}\Leftrightarrow\dfrac{1}{d}-\dfrac{1}{2d}=\dfrac{1}{d_1}-\dfrac{1}{3d_1}\Leftrightarrow3d_1=4d\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}d=-6\\d_1=-8\end{matrix}\right.\) vô lý vì d và d1 phải dương, bạn xem lại đề bài, bởi ngay từ ban đầu bạn đã biết nằm trong khoảng từ f đến 2f thì ảnh cao hơn vật là đúng, nhưng ra khỏi 2f thì nó luôn thấp hơn chứ ko thể nào cao hơn được. Nếu khoảng cách lúc sau bé hơn 10cm so với lúc đầu thì mới đúng.

 

 

 

Câu trả lời:

Mình sẽ nêu cách làm chung của những dạng như này.

Nếu cho biết vận tốc trên từng phần quãng đường:

B1: Tính từng khoảng thời gian t1,t2,...theo tổng quãng đường S

B2: Tính tổng thời gian t=t1+t2+...theo tổng quãng đường S

B3: Áp dụng công thức tính vận tốc trung bình.

Nếu cho biết vận tốc trong từng khoảng thời gian thì làm ngược lại là được.

Giờ ta sẽ áp dụng vô bài.

Đề bài cho ban đầu 1/3 quãng đường đi với vận tốc 20km/h, nghĩa là vận tốc trên từng phần quãng đường trước.

Gọi tổng quãng đường là S

Thời gian đi trên 1/3 quãng đường đầu là:

\(t_1=\dfrac{\dfrac{1}{3}S}{v_1}\left(h\right)\)

Gọi thời gian đi trên 2/3 quãng đường sau là t2

Lúc này bài toán lại đổi về vận tốc trong từng khoảng thời gian

Quãng đường đi được trong 2/3 thời gian còn lại là:

\(s_2=v_2.\dfrac{2}{3}t_2\left(km\right)\)

Quãng đường đi được trong thời gian cuối là:

\(s_3=v_3.\dfrac{1}{3}t_2\left(km\right)\)

Có \(s_2+s_3=\dfrac{2}{3}v_2t_2+\dfrac{1}{3}v_3t_2=t_2\left(\dfrac{2}{3}v_2+\dfrac{1}{3}v_3\right)=\dfrac{2}{3}S\Rightarrow t_2=\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}\left(h\right)\)

\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{1}{3v_1}S+\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{\dfrac{2}{3}}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=...\left(km/h\right)\)