Cho đường tròn (O;R). Lấy K là 1 điểm bên ngoài đường tròn, vẽ 2 tiếp tuyến KA và KB. Gọi M là giao điểm của AB và OK, đường thẳng qua M // với KB cắt cung nhỏ AB tại C. Tia KC cắt đường tròn (O) tại D ( D khác C) , cắt AB tại I, gọi H là trung điểm của CD.
a, C/m: 5 điểm K, A, O, H, B cùng thuộc 1 đường tròn
b, C/m: Tứ giác ODAI nội tiếp
c, C/m: OM.OK + KC.KD = KO2
d, C/m: MA là phân giác của góc CMD
e, Cho R = 5cm, KO = 10cm. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB
Cho ΔABC vuông ở A. Trên AC lấy điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a. Tứ giác ABCD nội tiếp
b. \(\widehat{ABD}\) = \(\widehat{ACD}\)
c. CA là phân giác của góc \(\widehat{SCB}\)
Cho nửa hình tròn tâm I, đường kính MN. Kẻ tiếp tuyến Nx và lấy điểm P chình giữa nửa đường tròn.Trên cùng PN, lấy điểm Q ( không trùng với P,N). Các tia MB và MQ cắt tiếp tuyến NX theo thứ tự tại S và T.
a. Chứng minh NS=MN
b. Chứng minh ΔMNT đồng dạng với tam giác NQT.
c. Chứng minh tứ giác PQTS nội tiếp được trong một đường tròn.
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.