HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Chứng minh:
\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}-\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}=-1\)
\(\left(\frac{2a+1}{\sqrt{a^3-1}}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)=\sqrt{a}-1\)
\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
\(\left(\frac{2-x\sqrt{x}}{2-\sqrt{x}}+\sqrt{x}\right).\frac{2-\sqrt{x}}{2-x}=\sqrt{x}+1\)
\(\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\frac{\sqrt{xy}}{x-y}=4\)