Do x+y+z và |x|+|y|+|z| luôn cùng tính chẵn lẻ với mọi nguyên x,y,z
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) có cùng tính chẵn lẻ với a-b+b-c+c-a
Mà a-b+b-c+c-a=0 là số chẵn
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) chẵn
Do \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2024^{a}+2025^{a}\)
Nên \(2024^{a}+2025^{a}\) cũng là số chẵn
Nếu a≠0, do 2024 chẵn và 2025 lẻ nên \(2024^{a}+2025^{a}\) lẻ (ko thỏa mãn)
=>a=0
Thay vào đề bài:
\(\left|0-b\right|+\left|b-c\right|+\left|c-0\right|=2\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|=2\)
- Nếu b,c đều khác 0, do b,c nguyên nên \(\left|b\right|\ge1;\left|c\right|\ge1\Rightarrow\left|b\right|+\left|c\right|\ge2\)
\(\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|\ge2\)
Mà \(\left|b\right|+\left|c\right|+\left|b-c\right|=2\Rightarrow\begin{cases}\left|b\right|=1\\ \left|c\right|=1\\ \left|b-c\right|=0\end{cases}\) \(\Rightarrow b=c=\pm1\)
- Nếu trong 2 số b, có 1 số bằng 0. Do vai trò b,c như nhau, giả sử b=0
Thay vào: \(\left|0\right|+\left|c\right|+\left|0-c\right|=2\Rightarrow2\left|c\right|=2\Rightarrow\left|c\right|=1\)
\(\Rightarrow c=\pm1\)
Vậy các sộ số nguyên a,b,c thỏa mãn yêu cầu là:
\(\left(a,b,c\right)=\left(0,0,1\right);\left(0,1,0\right),\left(0,0,-1\right),\left(0,-1,0\right);\left(0,1,1\right),\left(0,-1,-1\right)\)