HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Một túi tote xinh xẻo có in logo hoc24 thì sao ạ ???? E nghĩ nó là 1 món quà tuyệt vời đêý
Cho a,b,c > 0. Chứng minh: \(\left(a^2-a+1\right)\left(b^2-b+1\right)\left(c^2-c+1\right)\ge1\)
Sửa đề thành 96 cho dễ làm nha
\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+6\right)=96\)
\(\Leftrightarrow\left[\left(x-3\right)\left(x+6\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=96\)
\(\Leftrightarrow\left(x^2+3x-18\right)\left(x^2+3x+2\right)=96\)
Đặt \(x^2-3x-8=a\)
<=> (a - 10) (a + 10) = 96
\(\Leftrightarrow a^2-100=96\)
\(\Leftrightarrow a^2=196\)
\(\Leftrightarrow\left[{}\begin{matrix}a=14\\a=-14\end{matrix}\right.\)
Giải típ đc chứ ??
Giải PT: \(\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}=4x-3\)
Nhận thất 2 vế của BĐT đều dương nên bình phương lên
\(\Leftrightarrow3x^2-9x+1>x^2+4x+4\)
\(\Leftrightarrow2x^2-13x-3>0\)
................
Đề có nhầm ko mà nghiệm xấu vậy ạ ?
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-m+6}{m-3}\\x=\dfrac{m}{3\left(m-3\right)}\end{matrix}\right.\)
Để HPT có nghiệm thì m ≠ 3
Có: x + y = 2
\(\Leftrightarrow\dfrac{-m+6}{m-3}+\dfrac{m}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-3m+18+m}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-2m+18}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-m+9}{3\left(m-3\right)}=1\)
<=> -m + 9 = 3m - 9
<=> -4m + 18 = 0
\(\Leftrightarrow m=\dfrac{18}{4}\) (t/m)
Đặt \(\sqrt{1-3x}=a;\sqrt{x^2+1}=b\left(b>0;a\ge0\right)\)
\(\sqrt{2x^2+3x+1}=\sqrt{2\left(x^2+1\right)+\left(3x-1\right)}=\sqrt{2b^2-a^2}\)
\(\Leftrightarrow\sqrt{2b^2-a^2}+a=2b\)
\(\Leftrightarrow\sqrt{2b^2-a^2}=2b-a\) (2b ≥ a)
Bình phương lên:
\(2b^2-a^2=4b^2-4ab+a^2\)
\(\Leftrightarrow2b^2+2a^2-4ab=0\)
\(\Leftrightarrow a^2+b^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
Tự giải tiếp đc ko ạ ??
Cho tam giác ABC, biết rằng tồn tại các điểm M và N lần lượt trên các cạnh AB và BC sao cho \(\dfrac{2BM}{AM}=\dfrac{BN}{CN}\) và góc BNM = góc ANC. Chứng minh tam giác ABC vuông cân