Học tại trường Chưa có thông tin
Đến từ Hải Dương , Chưa có thông tin
Số lượng câu hỏi 95
Số lượng câu trả lời 38
Điểm GP 8
Điểm SP 15

Người theo dõi (7)

Bùi Ami
le tien phuong
Kim Jisoo

Đang theo dõi (1)

Akai Haruma

Câu trả lời:

bạn tự vẽ hình nhé

vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)

a) xét ΔABD và ΔAMD, có:

AM=AB (gt)

\(\widehat{BAD}=\widehat{MAD}\) (cmt)

AD chung

⇒ ΔABD = ΔAMD (c.g.c) (đpcm)

b) Từ ΔABD = ΔAMD (cmt)

    ⇒ BD=DM( 2 cạnh t/ứng) (đpcm)

       \(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)

c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.

vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)

vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ ​​\(\widehat{BDN}\)​ =\(\widehat{MDC}\)

Xét Δ BDN và ΔMDC, có:

\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)

BD=DM (cmt)

\(\widehat{DBN}=\widehat{DMC}\) (cmt)

⇒Δ BDN = ΔMDC (g.c.g) (đpcm)

d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC

mà AB=AM ⇒ AB+BN =AM+MC

                    ⇔AN=AC.⇒ Δ ANC cân tại A.

và AB=AM(gt) ⇒ ΔABM cân tại A

      mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)

    Vì  Δ ANC cân tại A (cmt) 

         AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.

                Mà AD⊥ BM⇒ BM//CN(đpcm)