HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\)
b.\(B=7-\left(x+3\right)^2\le7\forall x\) " = " \(\Leftrightarrow x=-3\)
c.\(C=\left|2x-3\right|-13\ge-13\forall x\) " = " \(\Leftrightarrow x=\dfrac{3}{2}\)
d.\(D=11-\left|2x-13\right|\le11\forall x\) " = " \(\Leftrightarrow x=\dfrac{13}{2}\)
\(...=0\) \(\Leftrightarrow\left(2x-5\right)^2-\left(x+2\right)^2=0\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
\(...=0,36\left(550+126+324\right)=0,36.1000=360\)
\(x^3-3x+a=x\left(x-1\right)^2+2\left(x-1\right)^2+a-2\)
Đa thức \(⋮\left(x-1\right)^2\Leftrightarrow a-2⋮\left(x-1\right)^2\Leftrightarrow a-2=k\left(x-1\right)^2\Leftrightarrow a=k\left(x-1\right)^2+2\)
\(P=\sqrt{a^2+3ab^2}+\sqrt{b^2+3ba^2}\le\sqrt{\left(a^2+b^2\right)+3ab\left(a+b\right)}\sqrt{2}\)
\(\le\sqrt{2+3.\dfrac{a^2+b^2}{2}.\sqrt{2\left(a^2+b^2\right)}}.\sqrt{2}\le\sqrt{2+3.\dfrac{2}{2}.\sqrt{2.2}}\sqrt{2}=2\sqrt{2}.\sqrt{2}=4\)
" = " \(\Leftrightarrow a=b=1\)
\(\dfrac{4x+3}{6}-\dfrac{6x-2}{8}=\dfrac{5x+4}{3}\)
\(\Leftrightarrow x\left(\dfrac{4}{6}-\dfrac{6}{8}-\dfrac{5}{3}\right)+\dfrac{3}{6}+\dfrac{2}{8}-\dfrac{4}{3}=0\)
\(\Leftrightarrow\dfrac{-7}{4}x-\dfrac{7}{12}=0\) \(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
Câu 15 : \(P=tan^3a+cot^3a+tan^2a+cot^2a=\left(tana+cota\right)^3-3tana.cota\left(tana+cota\right)+\left(tana+cota\right)^2-2tana.cota\)
\(=3^3-3.3+3^2-2=25\) . Chọn A
Câu 16 : Đặt a = \(sin^2x;b=cos^2x\Rightarrow a+b=1\)
Ta có : \(3a^2+b^2=\dfrac{3}{4}\) \(\Leftrightarrow3a^2+\left(1-a\right)^2=\dfrac{3}{4}\Leftrightarrow4a^2-2a+\dfrac{1}{4}=0\Leftrightarrow\left(a-\dfrac{1}{4}\right)^2=0\Leftrightarrow a=\dfrac{1}{4}\)
Suy ra : \(a^2=\dfrac{1}{16}\Rightarrow b^2=\dfrac{9}{16}\)
\(P=sin^4x+3cos^4x=a^2+3b^2=\dfrac{1}{16}+3.\dfrac{9}{16}=\dfrac{7}{4}\) . Chọn C
Giả sử bán kính hình tròn là r ( r > 0 ) ( cm )
Diện tích hình tròn ban đầu là \(S_1\)
Ta có : \(S_1=\pi r^2\) ; \(S_2=\pi\left(r-20\%r\right)^2=\pi r^2\dfrac{16}{25}=\dfrac{16}{25}S_1=S_1-452,16\)
\(\Rightarrow\dfrac{9}{25}S_1=452,16\Rightarrow S_1=1256\left(cm^2\right)\)
a. \(x^2-\left(2m-6\right)+m-13=0\) (1)
\(\left(1\right):\Delta'=\left(3-m\right)^2-\left(m-13\right)=m^2-6m+9-m+13=m^2-7m+22\)
\(=\left(m-\dfrac{7}{2}\right)^2+\dfrac{39}{4}>0\forall m\) => P/t luôn có 2 no p/b
b. Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=m-13\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2=3\left(m-13\right)-\left(2m-6\right)^2\)
\(=3m-39-4m^2+24m-36\) \(=-4m^2+27m-75\)
Đoạn này bn tự tìm
c . P/t có 2 no đối nhau \(\Leftrightarrow x_1+x_2=0\Leftrightarrow2m-6=0\Leftrightarrow m=3\)
Chiều rộng thửa ruộng : \(216:\left(3+5\right).3=81\left(m\right)\)
Chiều dài thửa ruộng : \(216-81=135\left(m\right)\)
Diện tích thửa ruộng : \(135.81=10935\left(m^2\right)\)
Đ/s : ...