Bài 1:
Cho a \(=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1\)
a) C/m: \(a^4-14a^2+9=0\)
b) Giả sử \(f\left(x\right)=x^5+2x^4-14x^3-28x^2+9x+19\)
Tính f(a).
Bài 2: Cho \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử \(f\left(x\right)=3x^6+4x^5-7x^4+6x^3+6x^2+6x-53\sqrt{2}\)
tính f(a)
Cho \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1\)
a) Chứng minh : \(a^4-14a^2+9=0\)
b) Giả sử \(f\left(x\right)=x^5+2x^4-14x^3-28x^2+9x+19\)
Tính f(a)
Bài 2: Cho \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử \(f\left(x\right)=3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)
Tính f(a)
a)