Cho hình chóp S.ABC có đáy là tam giác vuông tại B, SA vuông góc với đáy. Hạ AH vuông góc với SB, AK vuông góc với SC.
a, CM các mặt bên của hình chóp là các tam giác vuông.
b, CM tam giác SHK vuông.
c, Gọi D là giao điểm của HK và BC. CM: AC vuông góc với AD.
Mình cần phần c thôi nhé!
Cho hình chóp S.ABCD, đáy ABCD là tứ giác có ABD là tam giác đều, BCD là tam giác cân tại C có ∠BCD = 120o. SA vuông góc với mp đáy.
a, Gọi H, K là hình chiếu vuông góc của A trên SB, SD. CM: SC vuông góc với (AHK).
b, Gọi C' là giao điểm của SC với mp (AHK). Tính diện tích tứ giác AHC'K khi AB = SA = a.
Mình chỉ cần giúp phần b thôi nha, rất mong có phần giải thích để tìm ra giao điểm C'.
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, AB = SA = a, SA vuông góc với (ABCD). Gọi (P) là mặt phẳng qua A và vuông góc với SC, (P) cắt SB, SC, SD lần lượt tại H, I, K.
a, Chứng minh HK // BD.
b, Chứng minh AH vuông góc với SB, AK vuông góc với SD.
c, CM tứ giác AHIK có 2 đường chéo vuông góc. Tính diện tích AHIK theo a.
Mình không xác định được mp (P) nên giúp mình vẽ cả hình nữa nhé! Cảm ơn nhiều.