Học tại trường Chưa có thông tin
Đến từ Phú Yên , Chưa có thông tin
Số lượng câu hỏi 3
Số lượng câu trả lời 618
Điểm GP 245
Điểm SP 596

Người theo dõi (77)

Đang theo dõi (0)


Câu trả lời:

Giả sử \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\ge\dfrac{2}{1+\sqrt{ab}}\Leftrightarrow\dfrac{1}{1+a}-\dfrac{1}{1+\sqrt{ab}}+\dfrac{1}{1+b}-\dfrac{1}{1+\sqrt{ab}}\ge0\Leftrightarrow\dfrac{1+\sqrt{ab}-1-a}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+\sqrt{ab}-1-b}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\Leftrightarrow\dfrac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\Leftrightarrow\dfrac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\left(1+b\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}+\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\left(1+a\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}\ge0\Leftrightarrow\dfrac{-\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)\left(1+b\right)+\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\left(1+a\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}\ge0\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(-\sqrt{a}-\sqrt{a}.b+\sqrt{b}+a\sqrt{b}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}\ge0\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left[\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\right]}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}\ge0\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)\left(1+b\right)}\ge0\)(1)

\(\left(\sqrt{a}-\sqrt{b}\right)\left(1+a\right)\left(1+b\right)\ge0\)(2)

\(\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)\ge0\)(vì ab\(\ge1\))(3)

Từ (1),(2),(3)\(\Rightarrow\) điều giả sử đúng

Vậy \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\ge\dfrac{2}{1+\sqrt{ab}}\)

Câu trả lời:

a) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}-\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}+1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)}{\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\dfrac{\sqrt{2}\left(\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\right)}{\sqrt{2-1}}=\sqrt{2}.\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\)(1)

Đặt A=\(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\Leftrightarrow A^2=\sqrt{2}-1+\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}-2\sqrt{1}=2\sqrt{2}-2\Leftrightarrow A=\pm\sqrt{2\sqrt{2}-2}\)

Ta có \(\sqrt{\sqrt{2}-1}< \sqrt{\sqrt{2}+1}\Leftrightarrow\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}< 0\Leftrightarrow A< 0\)

Vậy A=\(-\sqrt{2\sqrt{2}-2}\)

(1)\(=\sqrt{2}.\left(-\sqrt{2\sqrt{2}-2}\right)=-\sqrt{4\sqrt{2}-4}\)

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}=\sqrt{3-2.\sqrt{3}.1+1}+\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{9.3}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}}-3\sqrt{3}=\left|\sqrt{3}-1\right|+\sqrt{4+2\sqrt{3}}-3\sqrt{3}=\sqrt{3}-1-3\sqrt{3}+\sqrt{3+2\sqrt{3}+1}=-2\sqrt{3}-1+\sqrt{\left(\sqrt{3}+1\right)^2}=-2\sqrt{3}-1+\sqrt{3}+1=-\sqrt{3}\)

c) \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-3\sqrt{x}-2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left[3\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3\sqrt{x}-2\right)}{\sqrt{x}+3}=\dfrac{2-3\sqrt{x}}{\sqrt{x}+3}\)