ĐỀ ĐẠI SỐ 1 TIẾT
Bài 1: giải các phương trình sau
a) 4x(x-5) -6= 2x(2x-1)
↔ 4x2 -20x -6 = 4x2 -2x
↔ 4x2 -4x2 -20x + 2x= 6
↔ -18x=6
↔ x= \(\dfrac{-1}{3}\)
Vậy S= \(\dfrac{-1}{3}\)
b) \(\dfrac{3x-1}{2}\)= \(\dfrac{5x+4}{3}\)-2x MC= 6
↔ \(\dfrac{3\left(3x-1\right)}{3.2}\)= \(\dfrac{2\left(5x+4\right)}{3.2}\)- \(\dfrac{2x.6}{6}\)
↔ 3(3x-1) = 2(5x+ 4) - 2x.6
↔ 9x -3 =10x + 8 - 12x
↔ 9x - 10x + 12x= 8 +3
↔ 11x = 11
↔ x = 1
vậy tập nghiệm của phương trình là x = 1
c) ( x+ 2)2 -5x -10 = 0
↔ (x +2 )2 -5(x+2)=0
↔ ( x+2) ( x+2-5) =0
↔ (x+2) ( x-3) =0
↔ x +2 = 0 hay x-3=0
↔ x= -2 hay x= 3
Vậy phương trình có nghiệm là x=-2; x=3
Bài 2: giải
Gọi x + 15(m) là chiều dài ban đầu của hcn ( x <0)
→ x(m) là chiều rộng ban đầu của hình chữ nhật
⇒ Diện tích hình chữ nhật: Sbd = (x+ 15)x
= x2 + 15x (m)
Ta có chiều rộng lúc sau: x-3 (m)
chiều dài lúc sau : x + 15 +2(m)
⇒ Diện tích lúc sau : ( x - 3) ( x + 15+2)
= x2 + 15x + 2x - 3x - 45-6(m)
THEO ĐỀ BÀI TA CÓ : Sbđ - Sls = 61
↔ ( x2 + 15x) - ( x2 + 15x + 2x - 3x -45 -6) = 61
↔ x2 + 15x-x2 -15x-2x+3x+45+6=61
↔ x + 51= 61
↔ x = 10
⇒ x = 10 là chiều rộng (m)
⇒ x +15 ↔ 10 + 15 = 25 là chiều dài (m)