2)
a) \(x^2\left(2-x\right)-x+2=0\)
\(\Leftrightarrow x^2\left(2-x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=1 hoặc x=-1
b) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2\left(x+5\right)-\left(x^2+5x\right)=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy x=-5 hoặc x=2
c) \(x\left(5-2x\right)+2x^2=15\)
\(\Leftrightarrow5x-2x^2+2x^2=15\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=\dfrac{15}{5}=3\)
Vậy x=3
d) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=-1
e) \(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow x^2+y^2-4x+6y+4+9=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy x=2 và y=-3