Cho \(\Delta ABC\) có 3 góc nhọn. Vẽ các đường cao AD, BE, CF cắt nhau tại H. Gọi M đối xứng với H qua BC.
a, C/minh: tứ giác ABMC nội tiếp trong đường tròn (gọi đường tròn đó là (O))
b, C/minh: OA vuông góc với EF
c, Gọi Q là trung điểm AB. C/minh: EQ là tiếp tuyến của đường tròn ngoại tiếp \(\Delta EHC\)
d, BE cắt đường tròn (O) tại điểm thứ hai là N và CF cắt (O) tại điểm thứ hai là P. Tính GTBT \(T=\frac{AM}{AD}+\frac{BN}{BE}+\frac{CP}{CF}\)
Cho phương trình (ẩn x) \(x^2-2\left(m+1\right)x+m-4=0\) (1)
a, Tìm m để phương trình (1) có 2 nghiệm phân biệt đều dương.
b, Gọi \(x_1,x_2\) là nghiệm của phương trình (1). Tìm GTNN của biểu thức : \(M=\frac{x_1^2+x^2_2}{x_1\left(1-x_2\right)+x_2\left(1-x_1\right)}\)