HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm m để
x4 - x3 - (m + 1)x2 + (m2 + m + 1)x - m2 ≥ 0 ∀x ∈ R
Tìm tập giá trị của P = x - a
Với |2x + 4 - 2a| + |x - 2 + a| ≤ 3
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
Hàm số xác định khi (2m2 + 1)(x2 - 4mx + 2) ≠ 0
⇔ x2- 4mx + 2 ≠ 0
⇔ Δ' < 0
⇔ 4m2 - 2 < 0
⇔ \(\dfrac{-\sqrt{2}}{2}< m< \dfrac{\sqrt{2}}{2}\)
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
ĐKXĐ : -1 ≤ x ≤ 3
x2 - 2x - 3 - 4\(\sqrt{-x^2+2x+3}\) + m = 0
Đặt a = \(\sqrt{-x^2+2x+3}\)
⇔ a = \(\sqrt{\left(x+1\right)\left(3-x\right)}\)
Áp dụng bất đẳng thức cosi cho 2 số dương x + 1 và 3 - x
\(\sqrt{\left(x+1\right)\left(3-x\right)}\le\dfrac{x+1+3-x}{2}=2\)
Vậy a ∈ [0 ; 2]
Ta có phương trình -a2 - 4a + m = 0
⇔ a2 + 4a - m = 0
Để phương trình đã cho có nghiệm x ∈ [-1 ; 3] thì phương trình được bôi đen có nghiệm a ∈ [0 ; 2]
⇔ Đường thẳng y = m cắt đồ thị hàm số y = a2 + 4a tại ít nhất một điểm có hoành độ nằm trong khoảng [0;2]
⇔ 0 ≤ m ≤ 12
Vậy tập các giá trị của m thỏa mãn ycbt là M = [0;12]
a, (2;5)
b, (4;3)
c, (5; - 2)
Công suất của lực \(\overrightarrow{F}\)
\(\rho=\dfrac{A}{t}=\dfrac{F.s.cos30^0}{t}=F.v.cos30^0\)
⇒ \(\rho=200.10.cos30^0\)
⇒ \(\rho=1723\left(W\right)\)
Cho 2 số thực dương x,y thỏa mãn
x + y = 4xy
CMR : Tập giá trị của P = xy là \(\left[\dfrac{1}{4};\dfrac{1}{3}\right]\)