1. \(\left\{{}\begin{matrix}x^2+y^2+x+y=4\\x\left(x+y+1\right)+y\left(y-1\right)=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-3\sqrt{x-1}=2x-2y\end{matrix}\right.\)
3. Tìm m để pt có nghiệm x1, x2 thoả mãn \(x_1=x^2_2\):
\(x^2+\left(2m+8\right)x+8m^3=0\)
Cho 3 số dương a,b , c thoả mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}v̀aa+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\)
Chứng minh rằng; \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)