Học tại trường Chưa có thông tin
Đến từ Quảng Ninh , Chưa có thông tin
Số lượng câu hỏi 24
Số lượng câu trả lời 1851
Điểm GP 183
Điểm SP 778

Người theo dõi (103)

Demo:))
Hieu Pham huu
sokim
Quốc Thanh

Đang theo dõi (0)


Câu trả lời:

Hình tự vẽ nha (Hình dễ vẽ mà :D)

a, Xét tam giác HBA và tam giác ABC có:

\(\widehat{AHC}=\widehat{BAC}\)

\(\widehat{C}\) chung

\(\Rightarrow\) \(\Delta\)HBA ~ \(\Delta\)ABC (gg)

b, Xét tam giác ABC vg tại A có: AB\(\perp\)AC

\(\Rightarrow\) BC2 = AB2 + AC2

BC2 = 122 + 162

BC2 = 144 + 256

BC2 = 400

BC = \(\sqrt{400}\) = 20 (cm)

\(\Delta\)HBA ~ \(\Delta\)ABC (cma)

\(\Rightarrow\) \(\frac{AH}{AC}=\frac{AB}{BC}\) = \(\frac{HB}{AB}\) (t/c đường p/g của \(\Delta\))

hay \(\frac{AH}{16}=\frac{12}{20}\) = \(\frac{HB}{12}\)

\(\Rightarrow\) AH = \(\frac{12\cdot16}{20}\) = 9,6 (cm)

\(\Rightarrow\) BH = \(\frac{12\cdot12}{20}\) = 7,2 (cm)

c, Xét tam giác ABH có: BM là p/g của \(\widehat{B}\) (M \(\in\) BN)

\(\Rightarrow\) \(\frac{AM}{MH}=\frac{AB}{BH}\) (t/c đường p/g của \(\Delta\)) (1)

Xét tam giác BAH và tam giác BCA có:

\(\widehat{BHA}=\widehat{BAC}\) = 90o

\(\widehat{B}\) chung

\(\Rightarrow\) \(\Delta\)BAH ~ \(\Delta\)BCA (gg)

\(\Rightarrow\) \(\frac{BA}{BC}=\frac{BH}{BA}\) (t/c)

hay \(\frac{BC}{BA}=\frac{BA}{BH}\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\frac{AM}{MH}=\frac{BC}{BA}\) = (= \(\frac{AB}{BH}\))

Xét tam giác AHI có: MN//HI (M \(\in\) BN)

\(\Rightarrow\) \(\frac{AN}{NI}=\frac{AM}{MH}\) (Định lý Ta-lét) (4)

Xét tam giác ABC có: BN là p/g của \(\widehat{B}\) (gt)

\(\Rightarrow\) \(\frac{NC}{AN}=\frac{BC}{BA}\) (t/c đường p/g của \(\Delta\)) (5)

Từ (3), (4), (5) \(\Rightarrow\) \(\frac{AN}{NI}=\frac{NC}{AN}\) (= \(\frac{AM}{MH}=\frac{BC}{BA}\))

hay AN2 = NI . NC (đpcm)

Chúc bn học tốt!! (khó nhất ở phần c theo, tách ý ra sẽ làm được thôi mà :D)

Câu trả lời:

\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)

\(\Leftrightarrow\) \(\frac{\left(3x+2\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}+\frac{\left(2x+1\right)\left(x+4\right)}{\left(x+4\right)\left(x-2\right)}=\frac{5\left(x+4\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}-\frac{x-32}{\left(x+4\right)\left(x-2\right)}\)

\(\Rightarrow\) (3x + 2)(x - 2) + (2x + 1)(x + 4) = 5(x + 4)(x - 2) - x + 32

\(\Leftrightarrow\) 3x2 - 6x + 2x - 4 + 2x2 + 8x + x + 4 = 5x2 - 10x + 20x - 40 - x + 32

\(\Leftrightarrow\) 5x2 + 5x = 5x2 + 9x - 8

\(\Leftrightarrow\) 5x2 + 5x - 5x2 - 9x + 8 = 0

\(\Leftrightarrow\) -4x + 8 = 0

\(\Leftrightarrow\) x - 2 = 0

\(\Leftrightarrow\) x = 2

Vậy S = {2}

\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\) (đkxđ: x \(\ne\) \(\pm\) 3)

\(\Leftrightarrow\) \(\frac{\left(x+2m\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-m\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{mx\left(x+1\right)}{\left(x+3\right)\left(x-3\right)}\)

\(\Rightarrow\) (x + 2m)(x - 3) + (x - m)(x + 3) = mx(x + 1)

\(\Leftrightarrow\) x2 - 3x + 2mx - 6m + x2 + 3x - mx - 3m - mx2 - mx = 0

\(\Leftrightarrow\) (2 - m)x2 - 9m = 0

Thay m = 1 ta được:

(2 - 1)x2 - 9 . 1 = 0

\(\Leftrightarrow\) x2 - 9 = 0

\(\Leftrightarrow\) (x - 3)(x + 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(KTM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

Vậy S = \(\varnothing\)

Thay m = 2 ta được:

(2 - 2)x2 - 9 . 2 = 0

\(\Leftrightarrow\) -18 = 0

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!!