A = \(\dfrac{8a^2+b}{4a}+b^2\)
Ta có: a + b \(\ge\) 1 \(\Leftrightarrow\) b \(\ge\) 1 - a
\(\Rightarrow\) A \(\ge\) \(\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2\)
\(\Leftrightarrow\) A \(\ge\) 2a + \(\dfrac{1}{4a}\) - \(\dfrac{1}{4}\) + 1 - 2a + a2
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{4a}\) + \(\dfrac{3}{4}\)
\(\Leftrightarrow\) A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\)
Áp dụng BĐT Cô-si cho 3 số dương a2; \(\dfrac{1}{8a}\); \(\dfrac{1}{8a}\)
a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) \(\ge\) 3\(\sqrt[3]{\dfrac{a^2}{64a^2}}\) = 3\(\sqrt[3]{64}\) = 3.4 = 12
\(\Leftrightarrow\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) 12 + \(\dfrac{3}{4}\) = \(\dfrac{51}{4}\)
Hay A \(\ge\) a2 + \(\dfrac{1}{8a}\) + \(\dfrac{1}{8a}\) + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{51}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\) a2 = \(\dfrac{1}{8a}\) \(\Leftrightarrow\) 8a3 = 1 \(\Leftrightarrow\) a3 = \(\dfrac{1}{8}\) \(\Leftrightarrow\) a = \(\dfrac{1}{2}\)
và b = 1 - a \(\Leftrightarrow\) b = 1 - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)
Vậy MinA = \(\dfrac{51}{4}\) \(\Leftrightarrow\) a = b = \(\dfrac{1}{2}\)
Chúc bn học tốt! (ko chắc lắm đâu)