2. a) Ta có: \(3x^3y^2=\dfrac{3}{5}x^3y^2+a.x^3y^2\)
\(\Rightarrow3=\dfrac{3}{5}+a\)
\(\Rightarrow a=3-\dfrac{3}{5}=\dfrac{12}{5}\)
Vậy: \(3x^3y^2=\dfrac{3}{5}x^3y^2+\dfrac{12}{5}x^3y^2\)
b) \(3x^3y^2=bx^3y^2-\left(-\dfrac{1}{4}x^3y^2\right)\)
\(\Rightarrow3=b+\dfrac{1}{4}\)
\(\Rightarrow b=3-\dfrac{1}{4}=\dfrac{11}{4}\)
Vậy: \(3x^3y^2=\dfrac{11}{4}x^3y^2-\left(-\dfrac{1}{4}x^3y^2\right)\)
c) Ta có: \(3x^3y^2=\left(-\dfrac{5}{7}x^2y\right).F\)
\(\Rightarrow F=\left(3x^3y^2\right):\left(-\dfrac{5}{7}x^2y\right)\)
\(\Rightarrow F=\left(3:\left(-\dfrac{5}{7}\right)\right)\dfrac{x^3y^2}{x^2y}\)
\(\Rightarrow F=-\dfrac{21}{5}xy\)
Vậy: \(3x^3y^2=\left(-\dfrac{5}{7}x^2y\right).\left(\dfrac{-21}{5}xy\right)\)