a) ĐKXĐ: x \(\ne\) \(\pm\)1
\(A=\dfrac{x^2+2x-3}{\left(x-1\right)\left(x+1\right)}\)
\(A=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+3}{x+1}\)
b) Khi x = -3
\(A=\dfrac{-3+3}{-3+1}=\dfrac{0}{-2}=0\)
c) Để A = 4
\(\Rightarrow\dfrac{x+3}{x+1}=4\)
\(x+3=4x+4\)
\(-3x=1\Rightarrow x=-\dfrac{1}{3}\)
d) Để A nguyên thì \(x+3\) \(⋮\) \(x+1\)
\(x+1+2⋮x+1\)
\(2⋮x+1\)
\(x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
| x+1 | -1 | 1 | -2 | 2 |
| x | -2 | 0 | -1 ( loại ) | 1 (loại ) |
Vậy để A nguyên thì x = -2 hoặc x = 0
( Loại trường hợp x = -1 và x = 1 do ĐKXĐ của x là x \(\ne\) \(\pm\)1
6-1=5
=>x có chữ số tận cùng là 0 và 5