HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
B O A D C
Ta có : Tia OD nằm giữa hai tia OC và OB, nên ta có:
\(\widehat{COD}+\widehat{BOD}=\widehat{BOC}\)
Tia OC nằm giữa hai tia OD và OA, nên ta có:
\(\widehat{AOC}+\widehat{COD}=\widehat{AOD}\)
Mà \(\widehat{COD}=\widehat{COD}\) và \(\widehat{AOC}=\widehat{BOD}\) (theo giả thiết)
Nên \(\widehat{COD}+\widehat{BOD}=\widehat{AOC}+\widehat{COD}\)
Vậy \(\widehat{BOC}=\widehat{AOD}\) đpcm
- - - - (cm) 0 22 23 24 25 (N) 1 2 3 4 5
Lê chí cường đúng
\(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(\Rightarrow-12x+60+21-7x=5\)
\(\Rightarrow-19x+81=5\)
\(\Rightarrow-19x=-76\Rightarrow x=4\)
Vậy \(x=4\)
Chúc học tốt !!!
3) \(A=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}\)
\(=2^{20-12}=2^8\)
Vậy \(A=2^8\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Đặt \(A=2^1+2^2+2^3+.....+2^{50}\)
\(\Rightarrow2A=2\left(2^1+2^2+2^3+....+2^{50}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+....+2^{51}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+....+2^{51}\right)-\left(2^1+2^2+2^3+....+2^{50}\right)\)
\(\Rightarrow A=2^{51}-2\)
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{100}}\)
\(\Rightarrow2A=2\times\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{100}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{100}}\right)\)\(\Rightarrow A=1-\dfrac{1}{2^{100}}\)
Vậy \(A=1-\dfrac{1}{2^{100}}\)
Ta có :
\(\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2014}=\left(1-\dfrac{1}{2015}\right)+\left(1-\dfrac{1}{2016}\right)+\left(1+\dfrac{2}{2014}\right)\) \(=\left(1+1+1\right)-\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)\)
\(=3-\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)\)
Dễ thấy : \(\left(\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{2}{2014}\right)>0\) vì \(\dfrac{1}{2015}>\dfrac{1}{2016}\)
Do đó \(\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2014}>3\)
2) a)
Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}\) nên \(16^{19}>8^{25}\)
Câu b cũng tương tự nha bạn làm cơ số bằng mũ ba là ra thui