HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Có: \(\frac{a}{c}=\frac{c}{b}\)
=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{b^2+c^2}=\frac{ac}{cb}=\frac{a}{b}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
=> Đpcm
a; b; c là 3 cạnh của tam giác => |a - c| < b ; |a - b| < c ; |b - c| < a
=> (|a - c|)2 < b2 => a2 - 2ac + c2 < b2 (1)
(|a - b|)2 < c2 => a2 - 2ab + b2 < c2 (2)
(|b - c|)2 < a2 => b2 - 2bc + c2 < a2 (3)
Cộng từng vế của (1)(2)(3) ta được: 2(a2 + b2 + c2) - 2(ab + bc + ca) < a2 + b2 + c2
=> a2 + b2 + c2 < ab + bc + ca (đpcm)
Ta có: \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\). Thay c2=ab vào \(\frac{a^2+c^2}{b^2+c^2}\)ta được:
\(\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)(đpcm)