a) \(\dfrac{3}{4}-\dfrac{1}{2}x=-\dfrac{1}{4}\)
\(\Leftrightarrow3-2x=-1\)
\(\Leftrightarrow-2x=-1-3\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
b) \(1\dfrac{2}{3}x+0,2=x-\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{5}{3}x+\dfrac{1}{5}=x-\dfrac{7}{8}\)
\(\Leftrightarrow200x+24=120x-105\)
\(\Leftrightarrow80x=-129\)
\(\Leftrightarrow x=-\dfrac{129}{80}\)
Vậy \(x=-\dfrac{129}{80}\)
c) \(\dfrac{3}{4}-\left|x+0,5\right|=\dfrac{1}{5}\)
\(\Leftrightarrow-\left|x+0,5\right|=\dfrac{1}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow-\left|x+0,5\right|=-\dfrac{11}{20}\)
\(\Leftrightarrow\left|x+0,5\right|=\dfrac{11}{20}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+0,5=\dfrac{11}{20}\\x+0,5=-\dfrac{11}{20}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{20}\\x=-\dfrac{21}{20}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{21}{20};x_2=\dfrac{1}{20}\)
d) \(\left(x+0,2\right)^2+0,75=1\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2+\dfrac{3}{4}=1\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=1-\dfrac{3}{4}\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow x+\dfrac{1}{5}=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{1}{2}\\x+\dfrac{1}{5}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{7}{10};x_2=\dfrac{3}{10}\)