HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|\)
\(=\sqrt{x-1}+1\)
\(\)
1. a.) \(\cot a=\dfrac{1}{\tan a}=\dfrac{1}{\sqrt{3}}\)
\(\tan\sqrt{3}=60\Rightarrow a=60^o\)
\(\sin60=\dfrac{\sqrt{3}}{2}\)
\(\cos60=\dfrac{1}{2}\)
b.) \(\cos^2a=1-\left(\dfrac{15}{17}\right)^2=\dfrac{64}{289}\Rightarrow\cos a=\dfrac{8}{17}\)
\(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{15}{17}}{\dfrac{8}{17}}=\dfrac{15}{17}.\dfrac{17}{8}=\dfrac{15}{8}\)
2. \(\left(\sin a+\cos a\right)^2+\left(\sin a-\cos a\right)^2+2\)
\(=\sin^2a+2.\sin a.\cos a+\cos^2a+\sin^2a\cdot2.\sin a.\cos a+\cos^2a+2\)
\(=2\sin^2a+2\cos^2a+2\)
\(=2\left(\sin^2a+\cos^2a\right)+2\)
\(=2.1+2=4\)
=> biểu thức trên ko phụ thuộc vào a
( 12,32 - 1,765 ) x 3,9
= 10,555 x 3,9
= 41,1645
\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow3x=2y\Rightarrow x=\dfrac{2y}{3}\) thay vào xy=10 ta có:
\(\dfrac{2y}{3}.y=10\Leftrightarrow2y^2=30\Leftrightarrow y^2=15\Leftrightarrow y=\sqrt{15}\)
\(\Rightarrow x=\dfrac{10}{\sqrt{15}}\)
Thay a+c=2b vào 2bd=c(b+d) ta có:
(a+c)d=cd+cb
<=> ad+cd=cd+cb
<=> ad=cb
<=> \(\dfrac{a}{b}=\dfrac{c}{d}\)
(a+b+c)3 - a3-b3-c3
= a3 +b3 +c3 + 3(a+b)(a+c)(b+c) - a3 - b3 - c3
= 3(a+b)(a+c)(b+c)
(a + b + c)3 - a3 - b3 - c3
= (a+b)3 + 3(a+b)c2 +3(a+b)2c+c3- a3 - b3 - c3
= a3+3a2b+3ab2+b3+3(a2+2ab+b2)c+3(a+b)c2+c3- a3 - b3 - c3
= 3a2b+3ab3+3a2c+6abc+3b2c+3c2a+3c2b
= (3c2b+6abc+3a2b)+3ac2+(3ab2+3b2c)+3a2c
= 3b(c2+2ac+a2)+3ac2+3b2(a+c)+3a2c
= 3b(c+a)2+3ac(a+c)+3b2(a+c)
= 3(a+c)[b(a+c)+ac(a+c)+b2]
\(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)