HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có: \(\left\{{}\begin{matrix}80x+160y=20\\2x+6y=0,7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}4x+8y=1\left(1\right)\\4x+12y=1,4\left(2\right)\end{matrix}\right.\)
Trừ (1) cho (2) vế theo vế ta được:
\(12y-8y=1,4-1\) <=> \(4y=0,4\)
<=> \(y=0,1\) => \(x=\dfrac{0,7-6.0,1}{2}\) = 0,05
b) \(2\left(a-b\right)\left(c-b\right)+2\left(b-a\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)
= \(2\left(ac-ab-bc+b^2+bc-ab-ac+a^2+ab-bc-ac+c^2\right)\)
= \(2a^2+2b^2+2c^2-2ab-2bc-2ac\)
= \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)
= \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\)
a) (a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac +a2 + b2 + c2
= (a2 + 2ab + b2 ) + (b2 + 2bc + c2 ) + (a2 + 2ac + c2)
= (a + b)2 + (b + c)2 + (c+a)2