1, So sánh
\(a,-\dfrac{1}{5}\) và \(\dfrac{1}{1000}\)
Cách 1: \(-\dfrac{1}{5}=-\dfrac{1.200}{5.200}=-\dfrac{200}{1000}\)
Ta có: \(-\dfrac{200}{1000}< \dfrac{1}{1000}\Rightarrow-\dfrac{1}{5}< \dfrac{1}{1000}\)
Cách 2: Ta có:
\(-\dfrac{1}{5}\) là số âm, \(\dfrac{1}{1000}\) là số dương
âm < dương \(\Rightarrow-\dfrac{1}{5}< \dfrac{1}{1000}\)
\(b,\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
Ta có: \(\dfrac{267}{-268}< -1\left(1\right)\), \(\dfrac{-1347}{1343}>-1\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)\(\Rightarrow\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
\(c,\dfrac{-13}{38}\) và \(\dfrac{29}{-88}\)
Ta có: \(\dfrac{-13}{38}=-\dfrac{13.44}{38.44}=-\dfrac{572}{1672}\)
\(\dfrac{29}{-88}=-\dfrac{29.19}{88.19}=-\dfrac{551}{1672}\)
\(\Rightarrow-\dfrac{572}{1672}< -\dfrac{551}{1672}\) hay \(-\dfrac{13}{38}< \dfrac{29}{-88}\)
Bài 2: Tìm x:
\(a,5-\left|x+\dfrac{1}{2}\right|=1\)
\(\Rightarrow\left|x+\dfrac{1}{2}\right|=4\)
Ta có \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=4\\x+\dfrac{1}{2}=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{9}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{9}{2};\dfrac{7}{2}\right\}\)
\(b,\dfrac{4}{3}+\left|2-\dfrac{1}{2}x\right|=7\)
\(\Rightarrow\left|2-\dfrac{1}{2}x\right|=7-\dfrac{4}{3}\)
\(\left|2-\dfrac{1}{2}x\right|=\dfrac{17}{3}\)
Ta có: \(\left\{{}\begin{matrix}2-\dfrac{1}{2}x=\dfrac{17}{3}\\2-\dfrac{1}{2}x=-\dfrac{17}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(2-\dfrac{17}{3}\right):\dfrac{1}{2}=-\dfrac{22}{3}\\x=\left[2-\left(-\dfrac{17}{3}\right)\right]:\dfrac{1}{2}=\dfrac{46}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{22}{3};\dfrac{46}{3}\right\}\)