HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
câu 1 cho bpt \(m\left(x-m\right)\ge x-1\) với giá trị nào sau đây của m thì tập nghiệm cuat bpt là S= \(\left(-\infty,m+1\right)\)
cho hai số thực x,y thỏa mãn 2x+3y\(\le7\). Giá trị lớn nhất của biểu thức P=x+y+xy là
tìm m để mọi \(x\in\left[0,+\infty\right]\) đều là nghiệm của bất phương trình \(\left(m^2-1\right)x^2-8mx+9-m^2\ge0\)
đẳng thức \(cos^{10}x+sin^{10}x=\dfrac{63}{128}+\dfrac{m}{32}cos4x+\dfrac{n}{128}cos8x\)
tìm m và n
làm cách nào dễ nhất nha
trong mặt phẳng với hệ tọa độ Oxy, cho elip(E) có phương trình chính tắc \(\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)
, với hai tiêu điểm là F1 và F2. Với điểm M bất kì trên (E) thì chu vi tam giác MF1F2 là
cho a,b,c là các số thực dương thỏa mãn f(x)= \(ax^2+4bx+c\ge0\) với mọi x thuộc R, tìm giá trị Fmin của biếu thức \(F=\dfrac{a+c}{b}\)