a, xet \(\Delta BFC\) vuong tai F va \(\Delta CEB\) vuong tai E
BC chung; \(\widehat{FBC}=\widehat{ECB}\left(\Delta ABCcan\right)\)
\(\Rightarrow\Delta BFC=\Delta CEB\left(ch-gn\right)\)
\(\Rightarrow BF=CE\)
b, Ta co: AF= AB- BF va AE= AC- EC
ma AB=AC (ABC can); BF=EC(cmt)
\(\Rightarrow AF=AE\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\)
=> EF//BC(d/li Talet dao)
c, ke duong cao AD, vi tg ABC can tai A nen AD vua la duong cao vua la duong trung truc
\(BD=DC=\dfrac{1}{2}BC=3cm\)
xet \(\Delta BEC\) va \(\Delta ADC\)
\(\widehat{C}chung;\widehat{ADC}=\widehat{BEC}=90\)
\(\Rightarrow\Delta BEC\infty\Delta ADC\Rightarrow\dfrac{AC}{BC}=\dfrac{DC}{EC}\)
\(\Rightarrow EC=\dfrac{BC.DC}{AC}=2cm\)
Ta co: AF=AE= AC-EC = 7cm
xet \(\Delta AFE\) va \(\Delta ABC\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC};\widehat{A}chung\)
\(\Rightarrow\Delta AFE\infty\Delta ABC\Rightarrow\dfrac{AF}{AB}=\dfrac{EF}{BC}\)
\(\Rightarrow EF=\dfrac{AF.BC}{AB}=\dfrac{14}{3}\approx4,67cm\)