HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hai biểu thức A = x + 2 x − 5 và B = 3 x + 5 + 20 − 2 x x − 25 với x ≥ 0 , x ≠ 25
(Từ câu 1-3)
1. Tính giá trị biểu thức A khi x=9.
Giải các phương trình sau:
a) 18 − x 5 + 17 − x 6 = 16 − x 7 + 15 − x 8 ;
b) x − 30 10 + x − 28 9 + x − 26 8 = − 6 ;
c) x + 81 19 + x + 82 18 + x + 83 17 = x + 84 16 + x + 85 15 + x + 86 14 ;
d) 20 − x 3 + 22 − x 4 = 24 − x 5 + 26 − x 6 .
a) 2 x − 1 3 + 6 3 x − 1 2 = 2 x + 1 3 + 6 x + 2 3 ;
b) x − 2 2 + 3 − 2 x 2 − 4 x − 4 x − 5 = x + 3 2 ;
c) x − 3 + 2 x − 3 − 1 3 = 3 − x 4 ;
d) x + 4 3 − 1 7 = 2 − x 7 + x 3 + x + 1 .
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
1) Chứng minh tứ giác AEHF nội tiếp đường tròn.
2) Chứng minh CE.CA = CD.CB.
Giải phương trình x 4 − 2 x 2 − 3 = 0
Tìm các giá trị của tham số m để các phương trình sau là phương trình bậc nhất:
a) 4 m 2 + 4 m + 1 x + 5 = 0 ;
b) m − 3 2 x − 7 = 0 ;
c) m 2 4 − m 4 + 1 16 x − 2 m + 1 = 0 ;
d) mx + 1 − 2 m + 2 = 0 .
Cho đường tròn (O; R), đường kính AB vuông góc với dây cung CD tại H (HB < R). Gọi M là điểm bất kì trên cung nhỏ AC, toa AM cắt đường thăng CD tại N; MB cắt CD tại E
a, Chứng minh các tứ giác AMEH và MNBH nội tiếp
b, Chứng minh NM.NA = NC.ND = NE.NH
c, Nối BN cắt (O) tại K (K ≠ B). Đường thẳng KH cắt (O) tại điểm thứ hai là F. Chứng minh ba điểm A, E, K thẳng hàng và ∆AMF cân.
d, Chứng minh rằng khi M di dộng trên cung nhỏ AC thì I luôn thuộc một đường tròn cố định