HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a,Xét \(\Delta\)AHB và \(\Delta\)CAB, có:
^AHB=^CAB(=900)
^ABC: chung
=> \(\Delta\)AHB \(_{\infty}\)\(\Delta\)CAB(g.g)
Vậy ......
đa tạ đa tạ bn. cx thế nhé Chắc bn là 1 ng iu hoa, 1 ng iu thiên nhiên và có 1 trí tưởng tượng phong phú
a, 5(2-3n)+42+3n\(\ge\)0
<=> 10-15n+42+3n\(\ge\)0
<=> 52-12n\(\ge\)0
<=> -12n\(\ge\)-52
<=>n\(\le\)\(\dfrac{13}{3}\)
Vậy bft có tập nghiệm là S={n/ n\(\le\)\(\dfrac{13}{3}\)}
a) -10 ; -15; -20
b) 1;-1;2;-2;5;-5;10;-10
phần b là tam giác EBD hay EBC vậy bạn?
a, (3x-1)(x2+2)=(3x-1)(7x-10)
<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0
<=>(3x-1)(x2+2-7x+10)=0
<=>(3x-1)(x2-7x+12)=0
<=>(3x-1)(x2-3x-4x+12)=0
<=>(3x-1)(x-3)(x-4)=0
<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)
b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))
<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)
<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>2t2+2t+13=5t+15
<=>2t2+2t-5t+13-15=0
<=>2t2-3t-2=0
<=>2t2-4t+t-2=0
<=>(t-2)(2t+1)=0
<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)
Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)
\(\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)^2\le\left(x+y+z\right)\left(xy+yz+zx\right)\le\frac{\left(x+y+z\right)^3}{3}\ge\frac{12^3}{3}\)
a) Ta có:
A=(\(\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\)) . \(\dfrac{x^2-1}{x^2+2}\)
=(\(\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\)).\(\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2}\)
=(\(\dfrac{\left(x+2\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x-1\right)}{x\left(x+1\right)\left(x-1\right)}\)).\(\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2}\)
=\(\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\). \(\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2}\)
=\(\dfrac{x^2+x+2x+2+x^2-x-2x+2}{x\left(x-1\right)\left(x+1\right)}\).\(\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2}\)
=\(\dfrac{2x^2+4}{x\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2}\)
=\(\dfrac{\left(2x^2+4\right)\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)\left(x^2+2\right)}\)
=\(\dfrac{2\left(x^2+2\right)\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)\left(x^2+2\right)}\)
=\(\dfrac{2}{x}\)
Vậy để giá trị của biểu thức A xác định thì x\(\ne\)0
23+36=59
=> 59<a+37<61
=> a+37=60
a=60-37
a=23